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A.G. González c
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Abstract

Eleven metals, namely, aluminium, calcium, cadmium, copper, iron, lead, magnesium, manganese, potassium,
sodium and zinc were determined in twenty samples of Sherry brandies and twelve samples of Penedés brandies by
applying atomic spectrometry techniques. Flame atomic absorption spectrometry was used for quantitating calcium,
copper, iron, magnesium, manganese and zinc; atomic emission spectrometry to determine potassium and sodium;
and graphite furnace atomic absorption spectrometry to analyse aluminium, cadmium and lead. A chemometric
approach was followed to study the discrimination between brandies from Sherry or Penedés according to the metal
profile. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

According to the Spanish regulations, brandy is
defined [1] as a complex spirituous beverage, is-
sued from wine distillates, and maturated in oak
casks at the adequate environmental conditions
for a suitable period of time in order to achieve
the organoleptic features peculiar to the elabora-
tion process.

Sherry brandy is elaborated from quality wines
(12–13% v/v ethanol) coming from stocks of vari-
eties Airen Blanca and Palomino. A previous dis-
tillation of these wines yields the called holandas
which are then aged according to the Solera sys-
tem of Jerez using as containers oak casks previ-
ously employed to maturate Sherry wines. After a
period of time within 5–25 years, the resulting
product is the Sherry brandy, with alcoholic con-
tents ranging 37–45% v/v ethanol. The aging of
Sherry brandies must be carried out necessarily in
warehouses located within the triangle whose cor-
ners are the cities of Jerez de La Frontera, El
Puerto de Santa Marı́a and Sanlúcar de Bar-
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Table 1
Experimental conditions for the determination of mineral elements

Element Linear range (mg l−1)Wavelength (nm) Dilution range (v/v)a

0.002–0.150309.3 Up to 1/10Al
0.3–5.0Ca Up to 1/100422.7
0.0002–0.0100228.8 No dilutionCd

Cu 0.08–0.50324.8 No dilution
0.25–0.50278.3 No dilutionFe
0.078–K Up to 1/100766.5
0.07–0.50285.2 Up to 1/100Mg

279.5Mn 0.02–2.00 No dilution
0.14–589.0 Up to 1/500Na

283.3Pb 0.0005–0.0100 1/3
213.9Zn 0.06–1.00 No dilution

a Diluted with ethanol 40% v/v.

rameda. This requirement comes from the capital
role played by the micro-climate found in these
environments [2,3].

Penedés brandy is elaborated from highly acid
white wines with low alcoholic content (7.5–9.5%
v/v ethanol) coming from stocks of varieties Par-
ellada, Macabeo and Xarel.lo. The used wines
spring from musts obtained from non-exhaustive
presses (and accordingly, exhibiting high contents
of dissolved solids), are SO2-free and are subjected
to a very special temperature controlled, double
discontinuous fermentation process [3]. The ob-
tained holandas are then aged according to either
the Solera system of Jerez or the static system in
the same container. The containers used are
charred new oak casks coming from USA or the
Limousin Valley (France).

The origin of the source wine as well as the
brandy elaboration procedure influence the metal
profile of brandies as a consequence of intermedi-
ate processes such as fermentation, maturation
and aging of wines and the way in which the
distillation is performed to obtain the brandy.
Pattern recognition of brandies have been carried
out by selecting organic trace compounds such as
fusel oils [4,5]. In the present paper we introduce
the use of metal profiles as possible chemical
descriptors for the sake of brandies classification.
Thus, the evaluation of metal profiles of brandies
may be of great importance in order to differenti-
ation between both kind of Spanish brandies.

Accordingly our aim is to evaluate the metal
profile of a number of samples of genuine Sherry
and Penedés brandies in order to develop rules for
differentiating them.

In the former, the method selected for multi-
component (metals) analysis of brandies was in-
ductively coupled plasma-optical emission
spectrometry (ICP-OES). However, the high alco-
hol content of samples precluded the plasma sus-
tenance. Thus, to avoid any time consuming step
devoted to alcohol elimination of samples, we
switch to single component methods (atomic ab-
sorption spectrometry, AAS and atomic emission
spectrometry, AES) for determining the metal
profiles.

Table 2
HGA 500 graphite furnace parameters used for analysis of Al,
Cd and Pb in brandiesa

Hold (s)Step Ramp (s)Temperature (°C)

Al Cd, Pb

80 80 5 151
100 1002 5 15

514006003 15
1600 3b024004
2500 25005 1 1

6 20 20 5 5

a Argon flow rate, 300 ml min−1; injection volume, 20 ml;
spectral bandwith, 0.7 nm.

b Gas stop for reading.
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Table 3
Data matrix obtained in the brandies studieda

Al Pb Cu FeSample number CaSample code Mg Na K

0.58 0.061 3.11 1.061 13.2J 2.83 122.3 12.71
0.18 0.022 0.70 0.40 4.0 2.15 161.8 1.532 J
0.09 0.039 0.46 0.40J 2.53 0.80 111.5 9.37

C4 0.25 0.052 1.32 0.56 3.7 1.88 58.5 8.91
J5 0.09 0.041 0.34 ND 1.6 0.30 111.1 0.92

0.47 0.103 1.16 NDC 3.36 0.71 48.0 8.54
1.14 0.313 2.59 1.78 14.8 7.99 419.9 31.207 J
0.16 0.050 1.32 0.70C 1.08 0.24 106.0 7.68

J9 0.19 0.034 0.88 0.54 7.9 4.14 105.0 3.69
J10 0.38 0.224 1.46 0.81 13.4 0.18 78.9 27.30

0.31 0.073 1.95 0.43C 3.311 3.40 79.5 5.78
0.24 0.035 1.83 0.3412 3.4C 1.39 86.5 3.57
0.33 0.020 1.34 0.73C 0.313 0.08 117.6 2.20

C14 0.21 0.071 0.94 0.48 0.3 0.06 93.3 1.14
C15 1.58 0.070 1.02 0.70 1,0 0.20 105.1 1.25

0.20 0.042 1.40 0.48J 4.216 0.73 127.7 3.56
0.16 0.05917 1.44J 0.44 3.5 0.46 134.5 3.00
0.15 0.024 0.30 0.40J 3.418 2.44 635.0 5.78

J19 0.21 0.044 1.10 ND 4.1 1.25 26.4 8.50
J20 1.37 0.073 5.31 2.03 13.9 11.20 224.2 50.38

0.02 0.040 0.36 0.32J 0.821 0.19 17.8 0.11
0.24 0.050 1.37 0.7522 3.5C 1.51 338.5 11.43
0.23 0.025 1.62 0.36C 0.923 0.24 227.8 6.86

C24 0.32 0.035 0.59 0.81 2.3 0.39 263.6 7.49
C25 0.27 0.070 2.85 0.35 2.7 2.25 246.7 17.69

0.80 0.029 2.46 1.20J 9.126 2.56 83.9 37.35
27 J 0.20 0.026 0.22 ND 3.6 0.69 38.2 7.74

1.00 0.026 0.80 0.71J ND28 2.80 141.1 38.52
J29 1.00 0.015 0.58 0.80 ND 1.41 249.4 7.31
J30 0.50 0.008 1.62 ND 1.7 0.33 43.9 6.28

0.80 0.018 1.77 0.62J ND31 2.24 60.6 70.06
32 J 0.30 0.022 1.19 ND 3.3 0.57 43.0 5.23

a Metal concentrations expressed as mg per l of brandy.

2. Materials and methods

2.1. Apparatus

A Perkin Elmer 3100 (Perkin Elmer Corp.,
Norwalk, CT) atomic absorption spectrometer
was used to quantitate calcium, copper, iron,
magnesium, manganese and zinc by using flame
atomic absorption spectrometry (FAAS) and
potassium and sodium by AES. A Perkin Elmer
1100B atomic absorption spectrometer fitted to a
Perkin Elmer HG-500 graphite furnace and a
Perkin Elmer AS-40 automatic injector was em-

ployed to determine aluminium, cadmium and
lead by the technique of graphite furnace atomic
absorption spectrometry (GFAAS). Experimental
conditions for metal determination are gathered
in Table 1. GFAAS temperature programs for
determining aluminium, cadmium and lead are
presented in Table 2.

2.2. Reagents and solutions

Aluminium metal, calcium carbonate, cadmium
metal, copper metal, iron wire, lead metal, magne-
sium ribbon, manganese metal, potassium chlo-
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ride, sodium chloride and zinc metal of analytical
reagent grade (E. Merck, Darmstadt, Germany)
were used for preparing stock solutions of �1000
mg l−1 following the Perkin Elmer guidelines.
Remainder reagents were of reagent grade or
better. Milli-Q treated water (Millipore Corp.,
Bedford, MA) was used throughout. The working
solutions were prepared by suitable dilution from
the corresponding stock solutions with 40% v/v
ethanolic solution.

2.3. Samples

Twenty samples of Sherry brandies with D.O.
trademark and twelve of Penedés brandies were
purchased in liquor retails and markets. These
samples correspond to the brands most commonly
consumed in Spain. The alcoholic degree ranged
within 35–40% v/v ethanol. Once opened, the
bottles were capped with our own corks and were
stored in a cupboard at room temperature. Three

Fig. 1. Scores plot of the studied cases for the two first PCs. Labels J and C refer to Sherry and Penedés brandy samples,
respectively.

Fig. 2. Dendrogram for the studied cases following the Ward’s method for cluster amalgamation and euclidean distance for linkage.
Labels J and C refer to Sherry and Penedés brandy samples, respectively.
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Fig. 3. Architecture of the BPNN: 4×2×2 plus bias. Four
metal descriptors for the input layer (Ca, Fe, Cu and Mg), a
hidden layer of two nodes (empirically established) and a
output layer with two nodes (the two categories J and C)

mended in the Perkin Elmer guidelines. All ele-
ments with the exception of As, were determined
from external calibration, by matching the alco-
holic content in the samples and the standards
used in calibration.

3. Results and discussion

The metal content of the different brandies
was determined and carefully scrutinised. Each
sample was identified with a code indicating
their origin (J: Jerez (Sherry) brandy or C: Cat-
alonian (Penedés) brandy). All the results were
expressed in mg of metal per litre of brandy, as
the average of triplicate measurements. These re-
sults were rounded up to the last significant
figure associated with random error.

Initial data analysis encompasses a variety of
techniques focused to explore the quality of the
descriptors chosen to characterise the studied
samples [6]. Irrelevant descriptors are the most
expensive ones because they only contribute to
darken the information contained in the data.
Thus they should be picked out from the data
matrix to ensure unbiased findings.

Features Zn, Cd and Mn exhibited high num-
ber of not detected cases. Thus, it should be
advisable to reject them in order to avoid mis-
leading conclusions. In such a way, the data ma-
trix once these three descriptors were eliminated
has dimensions 32×8. This is shown in Table 3.

Aside from its value for eliminating irrespec-
tive variables, feature selection is a very impor-
tant step for the sake of classification. If the
number of patterns or samples is n, and the
dimension of the pattern space is d, the mini-
mum requirement to be fulfilled to achieve a
correct class separation is n/d\3 [7]. In our
case, the ratio samples/descriptors is four, ad-
dressing the requirement.

A straightforward way to acquaint the dis-
criminant efficiency of the variables is the use of
categorised box and whisker plots [6]. By consid-
ering both the median and the interquartil range
of each remaining variable for every class, the
most differentiating descriptors were Ca, Fe, Cu
and Mg.

containers from different lots of each purchased
sample were analysed separately. Aliquots of
brandies were used without prior treatments for
preparing the assay solutions to be analysed.
These assay solutions were the pure liquor for
the determination of copper, iron, manganese
and zinc. Otherwise, suitable dilutions with 40%
v/v ethanolic solution were performed as indi-
cated in Table 1.

2.4. Analytical procedures

Brandies were diluted as appropriate for ob-
taining suitable read-outs for proper quantita-
tions. Ca, Cu, Fe, Mg, Mn and Zn were
determined by FAAS; Na and K, by AES and
Al, Cd and Pb by GFAAS. Sample dilution
ranges for each element were already given in
Table 1 and the temperature programs for the
GFAAS determinations were indicated in Table
2. Linear concentration intervals for each ele-
ment range between the detection limit (in con-
centration units) and a value, which is less or
equal to the maximal concentration, recom-
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On the other hand PCA-based display methods
were also considered. [8] The data matrix was
subjected to PCA leading to four principal com-
ponents (PCs) which explain about the 87% of the
data variance, with communalities higher than 0.7
always. The most significant variables will corre-
spond to those descriptors with higher PC-load-
ings. In our case, they were Fe, Mg, Cu and Ca in
very good agreement with the previous non-para-
metric assay. Scores plots of the two first PCs
issued from PCA may be of interest to visualize
data trends. The corresponding scores plot for the
studied brandies is shown in Fig. 1. As a first
glance, it may be considered that the Sherry sam-
ples are surrounding the Penedés ones. In conse-
quence, a linear separation of the classes based on
their origin was not found. Thus, linear classifica-
tion pattern recognition techniques cannot be of
interest for this case.

To assess this preliminary study, unsupervised
pattern recognition methods were applied. Data
matrix was subjected to an agglomerative hierar-
chical cluster analysis of samples [9]. Taking the
euclidean distance as similarity measure and the
Ward method as amalgamation rule, the dendro-
gram of Fig. 2 was obtained. As can be seen, no
class structure is observed, the samples forming
clusters containing both types of brandies.

4. Supervised pattern recognition using neural
networks based algorithms

Majority of parametric pattern recognition clas-
sification methods (LDA, SIMCA, PLS-DA)
[4,10] works well when the classes present inner
similarities and are well separated from each other
(minimization of the ratio of within classes sum of
squares and between classes sum of squares).
Thus, when dealing with data exhibiting non-lin-
ear class structure, these methods are not a good
choice; it should be more advisable to call on
neural networks classification algorithms like the
multilayer perceptron networks trained by error
back propagation (MPN-BP) [11–13]. They are
the tools of the trade when dealing with highly
non-linear frontiers between classes because the
use of sigmoidal or hyperbolic tangent functions

as transfer functions in the nodes associated to
hidden and output layers. Based on a preliminary
study, MPN-BP was performed with the following
architecture: four input nodes (the Fe, Mn, Cu
and Ca descriptor values) plus bias in the inactive
input layer, two output nodes (the two classes) for
the output layer, and one hidden layer containing
two nodes. The corresponding schema can be seen
in Fig. 3. Input values were normalized within
−1 and 1. Outputs were normalized within 0–1.
Initial weights were normalized between −0.1
and 0.1. The target error was set to 0.15. The
sigmoidal function was chosen as transfer func-
tion. The training rate was set to h=0.2 and the
momentum to h=0.5. For validation purposes
the studied data set was randomly divided into a
calibration set and a validation set, each consider-
ing the 50% of the samples of every class. To
suitably validate the recalling ability (%hits in
classifying the calibration set) and the prediction
performance (% hits in classifying the validation
set), both sets were repeated ten times for differ-
ent constitutions. The output is processed in the
following way: for values higher than 0.8 the
value 1 (hit) is taken and otherwise the value 0
(fail) is produced. The recalling average perfor-
mance was of 100%, once sample no. 6 was
removed as an outlier, and the prediction average
performance was of 93%.

Following the literature another validation pro-
cedure leading to a better estimation of the ex-
pected reliability of the network model is the
leave-one-out [4] or cross-validation procedure;
that is, leaving out of the training set each time, a
different sample and testing the model with the
sample left out from the training. Doing this, the
percentage hits in predicting the ‘one-member test
set’ was of about 81%, a fair value for the predic-
tion ability.

Accordingly, MPN-BP enables the suitable dis-
crimination of Sherry and Penedés samples using
Fe, Mg, Cu and Ca as descriptors.

5. Conclusion

The metal profile of brandies seems to be very
sensible to the elaboration process. Accordingly,
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metals content has been selected as chemical de-
scriptors for classifying two different kinds of
Spanish brandies: Sherry and Penedés brandies.
The use of classification procedures based on
artificial neural networks leads to about 90% hits
in prediction ability.
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